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Abstract. SEF is the dependence of the structure amplitude on its time length. The positions of the SEF
maxima mark quasi periods and periods. Four methods are distinguished according to their preliminary procedu-
res — with resampling or without resampling of the time series, with local or global detrending. The methods are
illustrated on B band data about the LBV n Carinae for the last 60 yr. All methods derive a photometric period of
5.7 + 0.1 yr, while the known orbital period is 5.54 yr.

HAMUPAHE HA NEPUOAU C ®YHKLUA HA UBABEHOCT HA CTPYKTYPATA.
YETUPU METOOA. ®OTOMETPUYEH NEPUOA HA ETA CARINAE.
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Knroyoeu dymu: Bpemesu pedose — nepuodu; MNepuodoxpemu; LBV 38e3du — Eta Carinae

Pe3rome: SEF e 3agucumocmma Ha amnnumydama Ha cmpykmypama om HeliHama epemesa ObiiKu-
Ha. MNMosuyuume Ha makcumymume Ha SEF mapkupam kea3u nepuodu u rnepuodu. Memodume ce pasnudagam
crioped npedsapumenHume npouedypu — cbc unu 6e3 pecamrnuHe Ha epemesgusi ped, C /loKaneH unu c enoba-
neH dempeHduHe. Memodume ca unrocmpupaHu 8bpxy B daHHu 3a LBV n Carinae 3a nocnedHume 60 2. Bcuyku
memoodu 0asam ¢homomempudeH nepuod 5.7 + 0.1 2., dokamo uszeecmHusim opbumareH nepuod e 5.54 .

Introduction

Various methods for revealing of repetitive structures, responsible for periods in time series or
light curves (ICs), exist. In astronomy CLEAN (Roberts, 1987) and Lomb-Scargle (Lomb, 1976;
Scargle, 1982) methods, hereafter C&LS, are used.

Our Structure Eminence Function (SEF) is the dependence of the average amplitude of the
repetitive structure (pattern) on the structure time length, E(t), Eq. 1, Figs.1c — 4c). SEF maxima
positions mark quasi periods and periods. We use also a Periodograph Function (PGF), which is
derived from the SEF by removal of its background curve, G(t,, Eq. 2, Figs. 1d — 4d). The PGF
maxima reveals better the SRF maxima.

The SEF method is tested on various time series. It is compared with the detailed
periododgram of Ilkiewicz et al. (2021) about the flickering of AQ Men (Georrgiev 2023, hereafter
G23). The SEF method is also applied and compared with C&LC methods on LCs of the LBV n Car
(Georgiev et al. 2024, hereafter G+24). Our SEF method reveals and uses average profiles (shapes)
of repetitive structures (Fig. 5). By this reason it poses up ro 2 times higher time resolution than the
C&CL methods. Also, the structure profiles may be useful in the understanding of the nature of the
periodicity.

Four SEF methods may be distinguished, as in Figs. 1 — 4. The subctipts stand for use of
resampled (R) or frifinal (O) Lc and applying of local (L) or global (G) detrending.
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In Figs. 1&2 SEFr. and SEFre methods work on an input (ILC) with constant time step.
Otherwise, we resample the original LC (OLC) by interpolation with constant time step and derive
resampled ILC (RLC). In Figs. 3&4 SEFoL and SEFoc methods work on OLC, without resampling.
Eventually, we fill the LC holes by interpolation.

All SEF methods work on flat LCs. i.e. LCs without significant largescale trends. Otherwise,
we build a smoothed ILC (SLC) and extract it from the ILC. In Figs. 1&3 SEFrL. and SEFoL methods
smooth the ILC locally, by moving average. Suitable window size (WS) of the smothing enshre good
protrude of the period naximum in the PGF. In Figs. 2&4 SEFrc and SEFoc methods smooth the ILC
globally, (G), fitting the ILC with a low degree polynomial.

Further the dependence SEF is building on the residual LC (RLC), which is the difference
between the ILC and its SLC. The RLC (Figs. 1b — 4b) has zero average value (AV) and specific
standard deviation (SD). The RLC servs all SEF method (Figs. 1¢c — 4c) and, eventually, C&LS
methods (G+24).
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Fig. 1. SEFrL: Resampled LC plus locally detrending through AV from WS of 6.5 yr.
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Fig. 2. SEFrc: Resampled LC plus globally detrending through 2-nd degree fit

The used abbreviations follow: AV — average value, C&LC — CLEAN & LC methods, dp — data
points, ILC — input LC, LC — light curve, PGF — periodograph function, OLC — original LC, RLC —
residual LC, SEF — structure eminence function, SLC — smoothed LC, SD — standard deviation, WS —
widow size.

Extracting and characterizing repetitive structures

For methods SEFr. and SEFrc (Figs. 1 & 2) we suppose RLC (ti, zi), with i=1,N data points
(dp) and constant time step 6t. Let this RLC containis a nrepetitive structure with length L dp or time
length t.=Lx&t. For the extraction of this structure we pull up the first L dp, z, i=1,L, from the RLS and
put them into an initially empty set with cell numbers j=1, L. Then we add there the next L dp, z,
i=L+1,L+L from the RLS, after this —the next L dp, etc. The (integer) number of possible additions is

79



K=N/L. In the end the ji cell, containing K additions with respective AV ajand SD d;. So, the structure
with length L is describing by signal profile a and noise profile d;. Further, the average amplitude
AL=<|ag;>L and average noise D.=<d;>_ are derived. Note that AL gathers absolute values |gj|, i.e. AL is
one side average amplitude of the structure. Applying SEF we extract by this manner numerous RLS
segments with lengths L=L1, Lmax, Characterizing each of them by AL and D.. For at least K=2 additions
we have Lmax=N/2.

For the methods SEFoL and SEFoc (Figs. 3 & 4) we have RLC (t, z) with i=1,N dp, whit
arbitrary sampling. Let this RLC contains a repetitive structure with time length t..

We extract and add such structures K times, like in the previous case but operating with t.
instead L. Preliminary we derive the left bounds tx., k=1,K, of numerous intervals, t«. = tL x (k-1). Then
we pull up data (ti, z)) from consecutively RLS segments with time lengths t.into an empty 2D set with
N cels. Note, we write time values tj = ti— tk instead ti. The (integer) number of additions is K=(tn-t1)/ tL.
Later we sort the transferred data and derive the sorted data z; (with suitable shifted times)
representing the profile of the segment with length t.. Further we resample this multitude data with
suitable step. Thus we derive signal profile a; and noise profile dj, as well as average amplitude
A=<|gj>L and average noise Di.=<dj>.. Applying such SEF method we extract by this manner
numerous RLS segments with lengths t..
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Fig. 3. SEFoL: Original LC plus localy detrending through AV from WS of 6.5 yr.
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Fig. 4. SEFoa: Original LC plus globally detrending through 2-nd degree fit

Deriving of SEF and PGF

Every significant repetitive structure in the RLC produces maximum of the amplitude funcion
AL and minimum of the noise funcion D.. Therefore, the ratio AL/ DL is a good indicator of periods and
we define the dimensionless SEF (Figs. 1c — 4c) as follows:
Q) EL=AL/DL or E(ty=A(ty/ D(ty.

The position of the most left SEF maximum in the SEF marks the basic period P.
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The SEF fit, Er, is a power function (Figs. 1c — 4c, dashed curves). The SEF maxima
protrude better above the SEF background. In log-log coordinates the general SEF fit is a Istright ine.
Then the background line, which bounds from down 90% of the SEF points, is derived by downward
shift of the SEF line. After reverse transform into linear coordinates, the SEF background libe, Es,
becomes power function with the same power exponent (Figs. 1¢ — 4c, solid curves). So, we define

the dimensionless PGF through the SEF values EL and respective SEF background ELg (Figs. 1d —
4d,) as follows:

(2) GL = (EL— ELB)/ ELs.

The PGF maxima protrude well and the resolution of the SEF method may be estimated better.

Periods from the SEF methods

Figures 1-4 illustrate the applying of the SEF methods on a B band LC of LBV n Car in
1963-2023, with 2186 dp compilated and homogenized in G+24.

Figures la—4a show the ILCs with N dp (dots) and the relevant SLCs (curves). In Figs.la &
2a the ILCs are derived from the OLCs by interpolate resampling with step of 0.05 yr. For Figs. 3a &
4a the step is 0.1 yr, applied after interpolate addition of 122 dp in the holes of the OLC. The maximal
hole size is decreased to 0.5 yr. In Figs. 1la & 3a the SLCs are derived from the ILCs by local
smoothing with window size WS of 6.5 yr (131 dp), but in Figs. 2a, 4a yhis is performed by 2-nd
degree polynomial fit.

Figures 1b—4b show the RLCs, i. e. the differences between the SLC and OLC. The relevant
with their N and SD are implemented. The horizontal lines show the levels “zero” and “zero £SD”. In
Figs. 1b & 3b, due to the local smoothing the RLS edges with lengths of 3.25 yr (65 dp) each, are lost.
Note, that we use RLC in magnitude difference RLC = —(ILC — LC). So, the positive RLC values
correspond to increased brightness.
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Fig. 5. SEF profiles of the repetitive structures, responsible for the period of 5.7 yr

Figures 1c — 4c show the SEFs, derived from the RLCs (Eq.1, Figs. 1b — 4b). The whole SEFs
for K=2 cover 27.4 yr (Figs. 1c & 3c) or 29.6 yr (Figs. 2c & 4c). Here Er and Eg are the power functions
of the SEF and SEF s background. respectibelly. PE is the power exponent. The SEF maxima mark
the basic period P and its default larger counterparts 2P, 3P, etc. The shorter counterparts, e. g. P/2,
are not seent.

Figures 1d — 4d show the initial parts of the PGFs (Eq.2). The peaks of the periods P and 2P
protrude clearly. The hump resolution isd the the half width at the half of the hump maximum, At. For
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P=5.7 yritis 4 - 5% or 0.23 — 0.28 yr. However, the ositions of the hump peaks may be estimated with
an accuracy of *0.1 yr. So, the basic period always is 5.7 0.1 yr. The puzzling period at 4.9 0.1 yr,
protruding in Figs.1 & 3, seems to be a noise appearence.

Profiles of the periods from the SEF methods

Our code may show profiles ajand d;, for any repetitive structure, i.e. for any SEF value.

Figures 5a1 — 5d: show the average signal profiles, aj, corresponding to SEF methods in
Figs 1—4. Each profile begins from the RLC point No.1, i.e. from an arbitrary phase. This is not an
obstacle for deriving the SEF (Eq.1), but for the illustrations here each profile is drawn twice. Vertical
bars show the average noise D of the profiles, K is the number of the profile addins from the RLC, G is
the value of the main PGF peak (always at 5.7 yr) and R is the ratio between the average heights of
the positive, A1, and negative, Az, part of the profile. Distances between the edge horizontal lines and
the zero level illustrate the values of A1 and Az. Note that In Figs.a: & b1 we derive R~1, but In Figs.c1&
d: we have R>1. When the positive part is heavy, the profile may be interpreted (somewhat
speculative) as product of “flashing”.

Figures 5a>—5d2 show the shapes of the profiles over their minima. There H is the weighted height
of this profile and g are the weighted skewness and kurtosis of the shape. Note, that the methods with
resampling give profiles with positive skewness, 5a2 & 5bz. Without resampling the skewness is
negative, 5¢c2 & 5d2. Note also, that the smooth profiles in 5c2 & 5d2 are derived with additional
smoothing/resampling. Figures.5e & 5f show the original ¢ & d profiles by dots and the respective
Smoothed profiles — by curves

Conclusions

Our SEF methods reveal and use average profiles of repetitive structures with a relative
resolution of 4-5%, up to 2 times better than the resolution of the C&LS methods. Dependng on the
preliminary procedures, the SEF methods have different advantages and disadvantages. In all cases
the different data density in the different LC parts may be a problem.

The resampling procedure ensures uniform use of all parts of the RLC. However, many LC
peaks may be omitted, which leads to decrease of the peaks in the functions and profiles (Figs. 1, 2,
5a, 5b). Without resampling the time resolution is saved, but the dense part of the RLC will dominates
(Figs. 3, 4, 5c, 5d).

The local smoothing by moving AV with suitable WS ensures good protrude of the SEF and
PGF peaks, but cw reject the edges of the RLC (Figs. 1, 3). The global smoothing by low degree
polynomial fit is a good approach, but it is rarely applicable (Figs.2, 4).

Generally, the methods SEFrL and SEFOoL (Fiigs. 1, 3) seem universal, inspite of the loss of
edge RLC data. Note that in Figs. 1 & 3 they reveal an inexplicable period of 4.9 yr.

All methods derive for n Car basic period of 5.7 £ 0.1 yr, just like in the study of G+24.
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