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Abstract. SEF is the dependence of the structure amplitude on its time length. The positions of the SEF 

maxima mark quasi periods and periods. Four methods are distinguished according to their preliminary procedu-
res – with resampling or without resampling of the time series, with local or global detrending. The methods are 
illustrated on B band data about the LBV η Carinae for the last 60 yr. All methods derive a photometric period of 

5.7  0.1 yr, while the known orbital period is 5.54 yr.  

 
 

НАМИРАНЕ НА ПЕРИОДИ С ФУНКЦИЯ НА ИЗЯВЕНОСТ НА СТРУКТУРАТА. 
ЧЕТИРИ МЕТОДА. ФОТОМЕТРИЧЕН ПЕРИОД НА ETA CARINAE.  

 
Цветан Георгиев 

 
Институт по астрономия и НАО – Българска академия на науките 

e-mail: tsgeorg@astro.bas.bg 
 

 
Ключови думи: Времеви редове – периоди; Периодожреми; LBV Звезди –  Eta Carinae 

 
Резюме:  SEF е зависимостта на амплитудата на структурата от нейната времева  дължи-

на. Позициите на максимумите на SEF маркират  квази периоди и периоди. Методите се различават 
според предварителните процедури – със или без ресамплинг на времевия ред, с локален или с глоба-
лен детрендинг. Методите са илюстрирани върху B данни за LBV η Carinae за последните 60 г. Всички 

методи дават фотометричен период 5.7  0.1 г., докато известният орбитален период е  5.54 г. 

 
 

Introduction 
 

Various methods for revealing of repetitive structures, responsible for periods in time series or 
light curves (ICs), exist. In astronomy CLEAN (Roberts, 1987) and Lomb-Scargle (Lomb, 1976; 
Scargle, 1982) methods, hereafter C&LS, are used.  

Our Structure Eminence Function (SEF) is the dependence of the average amplitude of the 
repetitive structure (pattern) on the structure time length, E(tL), Eq. 1, Figs.1c – 4c). SEF maxima 
positions mark quasi periods and  periods. We use also a Periodograph Function (PGF), which is 
derived from the SEF by removal of its background curve, G(tL, Eq. 2, Figs. 1d – 4d). The PGF 
maxima reveals better the SRF maxima.  

The SEF method is tested on various time series. It is compared with the detailed 
periododgram of Ilkiewicz et al. (2021) about the flickering of AQ Men (Georrgiev 2023, hereafter 
G23). The SEF method is also applied and compared with C&LC methods on LCs of the LBV η Car 
(Georgiev et al.  2024, hereafter G+24). Our SEF method reveals and uses average profiles (shapes) 
of repetitive structures (Fig. 5). By this reason it poses up ro 2 times higher time resolution than the 
C&CL methods.  Also, the structure profiles may be useful in the understanding of the nature of the 
periodicity.   

Four SEF methods may be distinguished, as in Figs. 1 – 4.  The subctipts stand for use of 
resampled (R) or frifinal (O) Lc and applying of local (L) or global (G) detrending. 
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In Figs. 1&2 SEFRL and SEFRG methods work on an input  (ILC) with constant time step. 
Otherwise, we resample the original LC (OLC) by interpolation with constant time step and derive 
resampled ILC  (RLC). In Figs. 3&4 SEFOL and SEFOG methods work on OLC, without resampling. 
Eventually, we fill the LC holes by interpolation. 

All SEF methods work on flat LCs. i.e. LCs without significant largescale trends. Otherwise, 
we build a smoothed ILC (SLC) and extract it from the ILC. In Figs. 1&3 SEFRL and SEFOL methods 
smooth the ILC locally, by moving average. Suitable window size (WS) of the smothing enshre good 
protrude of the period naximum in the PGF.  In Figs. 2&4  SEFRG and SEFOG methods smooth the ILC 
globally, (G), fitting the ILC with a low degree polynomial.    

Further the dependence SEF is building on the residual LC (RLC), which is the difference 
between the ILC and its SLC. The RLC (Figs. 1b – 4b) has zero average value (AV) and specific 
standard deviation (SD). The RLC servs all SEF method (Figs. 1c – 4c) and, eventually, C&LS 
methods (G+24).  

 

 
 

Fig. 1. SEFRL :  Resampled LC plus locally detrending through  AV from WS of 6.5 yr.  
 

 

 
 

Fig. 2. SEFRG :  Resampled LC plus globally detrending through 2-nd degree fit 

 
The used abbreviations follow: AV – average value, C&LC – CLEAN & LC methods, dp – data 

points, ILC – input LC,  LC – light curve, PGF – periodograph function, OLC – original LC, RLC – 
residual LC, SEF – structure eminence function, SLC – smoothed LC, SD – standard deviation, WS – 
widow size.  

 
Extracting and characterizing repetitive structures 
 

For methods SEFRL and SEFRG (Figs. 1 & 2) we suppose RLC (ti, zi), with i=1,N data points 
(dp) and constant time step δt. Let this RLC  containis a nrepetitive structure with length L dp or time 
length tL=L×δt. For the extraction of this structure we pull up the first L dp, zi, i=1,L, from the RLS and 
put them into an initially empty set with cell numbers j=1, L. Then we add there the next L dp, zi, 
i=L+1,L+L from the RLS, after this –the  next L dp, etc. The (integer) number of possible additions is 
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K=N/L. In the end the jth cell, containing K additions with respective AV aj and SD dj. So, the structure 
with length L is describing by signal profile aj and noise profile dj. Further, the average amplitude 
AL=<|aj|>L and average noise  DL=<dj>L are derived. Note that AL gathers absolute values |aj||,  i.e. AL is 
one side average amplitude of the structure. Applying SEF we extract by this manner numerous RLS 
segments with lengths L=L1, Lmax, characterizing each of them by AL and DL. For at least K=2 additions 
we have Lmax=N/2.   

For the methods SEFOL and SEFOG (Figs. 3 & 4) we have RLC (ti, zi) with i=1,N dp,  whit 
arbitrary sampling. Let this RLC contains a repetitive structure with time length tL.  

We extract and add such structures K times, like in the previous case  but operating with tL 
instead L. Preliminary we derive the left bounds tkL, k=1,K, of numerous intervals, tkL = tL × (k-1). Then 
we pull up data (ti, zi) from consecutively RLS segments with time lengths tL into an empty 2D set with 
N cels. Note, we write time values tj = ti – tk instead ti. The (integer) number of additions is K=(tN-t1)/ tL. 
Later we sort the transferred data and derive the sorted data zj (with suitable shifted times)  tj, 
representing the profile of the segment with length tL. Further we resample this multitude data with 
suitable step. Thus we derive signal profile aj  and noise profile dj, as well as average amplitude 
AL=<|aj|>L and average noise  DL=<dj>L. Applying such SEF method   we extract by this manner 
numerous RLS segments with lengths tL. 

 

 
 

Fig. 3. SEFOL: Original LC plus localy detrending through AV from WS of 6.5 yr. 
 

 

 
 

Fig. 4. SEFOG: Original LC plus globally detrending through 2-nd degree fit 

 
Deriving of SEF and PGF  
 

Every significant repetitive structure in the RLC produces maximum of the amplitude funcion 
AL and minimum of the noise funcion DL. Therefore, the ratio AL / DL is a good indicator of periods and 
we define the dimensionless SEF (Figs. 1c – 4c) as follows: 

   
(1) EL = AL / DL   or     E(tL) = A(tL) / D(tL). 
 
The position of the most left SEF maximum in the SEF marks the basic period P.  
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The  SEF fit, EF, is a power function (Figs. 1c – 4c, dashed curves).  The SEF maxima 
protrude better above the SEF background. In log-log coordinates the general SEF fit is a lstright ine. 
Then the background line, which bounds from down 90% of the SEF points, is derived by downward 
shift of the SEF line. After  reverse transform into linear coordinates, the SEF background libe, EB, 
becomes power function with the same power exponent (Figs. 1c – 4c, solid curves).  So, we define 
the dimensionless PGF through the SEF values EL and  respective SEF background EL,B (Figs. 1d – 
4d,) as  follows:  

 
(2)  GL = (EL – EL,B)/ EL,B. 
 
The PGF maxima protrude well and the resolution of the SEF method may be estimated better.   

 
Periods from the SEF methods  
 

Figures 1–4 illustrate the applying of the SEF methods on a B band LC of LBV η Car in  
1963–2023, with  2186 dp compilated and homogenized in G+24.  

Figures 1a–4a show the ILCs with N dp (dots)  and the relevant SLCs (curves).  In Figs.1a & 
2a the ILCs are derived from the OLCs by interpolate resampling with step of 0.05 yr. For Figs. 3a & 
4a the step is 0.1 yr, applied after interpolate addition of 122 dp in the holes of the OLC. The maximal 
hole size is decreased to 0.5 yr. In Figs. 1a & 3a the SLCs are derived from the ILCs by local 
smoothing with window size WS of 6.5 yr (131 dp), but in Figs. 2a, 4a yhis is performed by 2-nd 
degree polynomial fit. 

Figures 1b–4b  show the RLCs, i. e. the differences between the SLC and OLC. The relevant 
with their N and SD are implemented. The horizontal lines show the levels “zero” and “zero ±SD”. In 
Figs. 1b & 3b, due to the local smoothing the RLS edges with lengths of 3.25 yr (65 dp) each, are lost.  
Note, that we use RLC in magnitude difference RLC = –(ILC –  LC). So, the positive RLC values 
correspond to increased brightness.  

 

 
 

 
 

 
 

Fig. 5. SEF profiles of the repetitive structures, responsible for the period of 5.7 yr 

 
Figures 1c – 4c show the SEFs, derived from the RLCs (Eq.1, Figs. 1b – 4b). The whole SEFs 

for K=2 cover 27.4 yr (Figs. 1c & 3c) or 29.6 yr (Figs. 2c & 4c). Here EF and EB are the power functions 
of the SEF and SEF s background. respectibelly. PE is the power exponent. The SEF maxima mark 
the basic period P and its default larger counterparts  2P,  3P, etc. The shorter counterparts, e. g. P/2, 
are not seent. 

Figures 1d – 4d  show the initial parts of the PGFs (Eq.2). The peaks of the periods P and 2P 
protrude clearly. The hump resolution isd the the half width at the half of the hump maximum, Δt. For 
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P=5.7 yr it is 4 - 5% or 0.23 – 0.28 yr. However, the ositions of the hump peaks may be estimated with 
an accuracy of  ±0.1 yr. So, the basic period always is 5.7 ±0.1 yr. The puzzling period at 4.9 ±0.1 yr, 
protruding in Figs.1 & 3, seems to be a noise appearence. 

 
Profiles of the periods from the SEF methods 

 

Our code may show profiles aj and dJ, for any repetitive structure, i.e. for any SEF value.  
Figures 5a1 – 5d1 show the average signal profiles, aj ,  corresponding to SEF methods in  

Figs 1—4. Each profile begins from the RLC point No.1, i.e. from an arbitrary phase. This is not an 
obstacle for deriving the SEF (Eq.1), but for the illustrations here each profile is drawn twice. Vertical 
bars show the average noise D of the profiles, K is the number of the profile addins from the RLC, G is 
the value of the main PGF peak (always at 5.7 yr) and R is the ratio between the average heights of 
the positive, A1, and negative, A2, part of the profile. Distances between the edge horizontal lines and 
the zero level illustrate the values of A1 and A2. Note that In Figs.a1 & b1 we derive R~1, but In Figs.c1& 
d1 we have R>1. When the positive part is heavy, the profile may be interpreted (somewhat 
speculative) as product of “flashing”. 
    Figures 5a2—5d2 show the shapes of the profiles over their minima. There H is the weighted height 
of this profile and g are the weighted skewness and kurtosis of the shape. Note, that the methods with 
resampling give profiles with positive skewness, 5a2 & 5b2. Without resampling the skewness is 
negative, 5c2 & 5d2. Note also, that the smooth profiles in 5c2 & 5d2 are derived with additional 
smoothing/resampling. Figures.5e & 5f show the original c & d profiles by dots and the respective 
Smoothed profiles – by curves 

 
Conclusions 

 

Our SEF methods reveal and use average profiles of repetitive structures with a relative 
resolution of 4–5%, up to 2 times better than the resolution of the C&LS methods. Dependng on the 
preliminary procedures, the SEF methods have different advantages and disadvantages. In all cases 
the different data density in the different LC parts may be a problem. 

The resampling procedure ensures uniform use of all parts of the RLC.  However, many LC 
peaks may be omitted, which leads to decrease of the peaks in the functions and profiles (Figs. 1, 2, 
5a, 5b).  Without resampling the time resolution is saved, but the dense part of the RLC will dominates 
(Figs. 3, 4, 5c, 5d).  

The local smoothing by moving AV with suitable WS ensures good protrude of the SEF and 
PGF peaks, but сш reject the edges of the RLC (Figs. 1, 3). The global smoothing by low degree 
polynomial fit is a good approach, but it is rarely applicable (Figs.2, 4). 

Generally, the methods SEFRL and SEFOOL  (Fiigs. 1, 3)  seem universal, inspite of the loss of 
edge RLC data. Note that in Figs. 1 & 3 they reveal an inexplicable period of 4.9 yr.  

All methods derive for η Car basic period of 5.7 ± 0.1 yr, just like in the study of G+24. 
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